Ecdysteroid responses of estuarine crustaceans exposed through complete larval development to juvenile hormone agonist insecticides.
نویسندگان
چکیده
Fenoxycarb and pyriproxyfen are insecticides that gain their toxicity by specifically acting as insect juvenile hormone agonists (JHA), and so are endocrine disruptors by design and effectively prevent larvae from maturing into adults. Efforts to assess the environmental effects of JHAs on nontarget populations of invertebrates have resulted in the utilization of several established estuarine crustacean models. This work was conducted to test the hypothesis that the mortality, inhibition of development and decreased fecundity reported previously in these animals from JHA exposure coincides with abnormal circulating titers of ecdysteroids. Gravid female grass shrimp (Palaemonetes pugio) and mud crabs (Rhithropanopeus harrisii), species with different developmental plasticity and JHA tolerances, were collected and held at wet lab conditions (20 ppt salinity, 25°C) until larval release. Larvae were collected <12 hr after hatch and exposed to JHAs during a static renewal test through end of development with seawater or nominal concentrations of JHA previously shown to induce significant developmental delays and/or decreased body weights. Larvae were subsampled (10 larvae/sample, n = 2 to 8) at each developmental stage, lyophilized, and ecdysteroids extracted by homogenization in 80% methanol and elution from C18 Sep-Pak cartridges with 25%, 60% and 100% methanol to capture the polar, free, and apolar conjugates, respectively, and then quantified by ELISA. As was expected significant differences in successful completion of development (larval survival), developmental duration, and growth (dry weight) were observed. These physiological perturbations were linked with significantly altered ecdysteroid titers, supporting a newly emerging theory that juvenoids possibly act as anti-ecdysteroids through a novel molecular mechanism involving inhibition of ecdysteroid signaling.
منابع مشابه
The influence of insect juvenile hormone agonists on metamorphosis and reproduction in estuarine crustaceans.
Comparative developmental and reproductive studies were performed on several species of estuarine crustaceans in response to three juvenile hormone agonists (pyriproxyfen, methoprene and fenoxycarb). Larval development of the grass shrimp, Palaemonetes pugio, was greater than two orders of magnitude more sensitive to disruption by methoprene and fenoxycarb than was embryonic development. Develo...
متن کاملNew insecticides with ecdysteroidal and juvenile hormone activity.
Agrochemical research over the last two decades has resulted in the discovery of chemically novel insecticides that mimic the action of the two insect growth and developmental hormones, the steroidal 20-hydroxyecdysone (20E) and the sesquiterpenoid juvenile hormone (JH). Bisacylhydrazines are non-steroidal agonists of 20E and exhibit their insecticidal activity via interaction with the ecdyster...
متن کامل1 Bela Keshan
Insect molting and metamorphosis are regulated by two major insect hormones, the juvenile hormone (JH) and ecdysteroids. Ecdysteroids initiate the molting process, whereas JH dictates the character of a molt. At the critical period of ecdysteroid rise, the presence or absence of JH directs larval-larval molting or metamorphosis. Ecdysteroid after binding with its receptor activates the expressi...
متن کاملEmbryonic, larval and juvenile development of tropical sea urchin, Diadema setosum
Diadema setosum (Leske, 1778), is one of the common echinoids widely distributed in the Indo-West Pacific Ocean, where it occurs from the Red Sea, Persian Gulf and the east coast of Africa to Japan, Australia and Malaysia. To investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of D. setosum in a controlled laboratory condition at the In...
متن کاملPhenotypic links in complex life cycles: conclusions from studies with decapod crustaceans.
I review studies on decapod crustaceans to draw conclusions about the importance of effects of past environmental conditions on development, phenotype, performance, and survival in animals. I consider 3 critical points of the life cycle: the allocation of reserves into eggs, the hatching of larvae, and metamorphosis from the larval to the juvenile phase. Biomass allocated to eggs varies among f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 45 1 شماره
صفحات -
تاریخ انتشار 2005